Computer Architecture — EPITA — S3 — 2022/2023

Final Exam S3
Computer Architecture

Exercise 1

Write answers only on the answer sheet.
Do not use a pencil or red ink.

(3 points)

Duration: 1 hr 30 min

Complete the table shown on the answer sheet. Write down the new values of the registers (except the
PC) and memory that are modified by the instructions. Use the hexadecimal representation. Memory

and registers are reset to their initial values for each instruction.

Initial values:

Exercise 2

DO = $FFFFO05
D1 = $FFFFFFE®
D2 = $AAAAGO18

$005000 54 AF
$005008 (9 10
$005010 13 79

(2 points)

A0
Al
A2

18 B9 E7 21 48 CO
11 C8 D4 36 1F 88
01 80 42 1A 2D 49

$00005000 PC = $00006000
$00005008
$00005010

Complete the table shown on the answer sheet. Give the result of the additions and the values of the N, Z,

V and C flags.

Exercise 3

(4 points)

Let us consider the following program. Complete the table shown on the answer sheet.

Main

nextl

next2

next3

loop3

next4

loop4

move.l #Sff,

moveq.l #1,
cmpi.w #Sfe,
ble next2
moveq.l #2,
moveq.l #1,
cmpi.b #Sfe,
ble next3
moveq.l #2,
clr.l

move.l #518,
addq.l #1,
subq.b #2,
bne loop3
clr.l

clr.l

addq.l #1,
dbra , Lloop4

Ed

; DBRA = DBF

Final Exam S3

1/10

Computer Architecture — EPITA — S3 — 2022/2023
Exercise 4 (11 points)

All the questions in this exercise are independent. Except for the output registers, none of the data or
address registers must be modified when the subroutine returns. A string of characters always ends
with a null character (the value zero). For the whole exercise, we assume that the strings of characters are
never empty (they contain at least one character different from the null character).

1. Write the GetStart subroutine that returns the address of the first occurrence of a character in a
string.
Input: AO.L points to a string of characters.
DO0.B holds the ASCII code of a character. We call this character C and we assume that it is in
the string pointed to by A0.L.
Output: A0.L points to the first occurrence of C in the string.

Be careful. The GetStart subroutine must contain 4 lines of instructions at the most.

2. Write the GetEnd subroutine that returns the address located right after the last character in a se-
quence of identical characters. We consider that a sequence of identical characters can be made up of
either a single character or several identical characters.

Input: AO0.L points to a non-null character in a string. We call this character C.

Output:

« If the character that follows C is different from C, then A0.L will point to the character that fol-
lows C.

« If there are several C characters in a row, then A0.L will point to the character that follows the
last C.

For instance, let us consider the following string: “Heeeellooooo Wooorld”
« If A0.L points to “H”, the returned address will be that of the first “e”.
- If A0.L points to the first “e”, the returned address will be that of the first “I”.
- If A0.L points to the first “1”, the returned address will be that of the first “o0”.
- If A0.L points to the first “o0”, the returned address will be that of the space character.
- If A0.L points to “r”, the returned address will be that of the last “1”.
- If A0.L points to “d”, the returned address will be that of the null character.

Be careful. The GetEnd subroutine must contain 12 lines of instructions at the most.

Final Exam S3 2/10

Computer Architecture — EPITA — S3 — 2022/2023

3. By using the GetStart and GetEnd subroutines, write the SuccessiveCount subroutine that counts
the number of characters in a sequence of identical characters. Such a sequence is in a string. If sev-
eral sequences based on the same character are in the string, only the first sequence must be taken
into account.

Input: AO.L points to a string of characters.
DO0.B holds the ASCII code of a character. We call this character C and we assume that it is in
the string pointed to by A0.L.

Output: DO.L holds the number of C characters in a row from the first C.

For instance, let us consider that A0.L points to the following string: “Heeeellooooo Wooorld”
- If D0.B holds “H”, the returned value will be 1.
. If DO.B holds “e”, the returned value will be 4.
- If D0.B holds “1”, the returned value will be 2.
. If DO.B holds “0”, the returned value will be 5.
- If D0.B holds “W?”, the returned value will be 1.
- If D0.B holds “d”, the returned value will be 1.

Be careful. The SuccessiveCount subroutine must contain 12 lines of instructions at the most.

Final Exam S3 3/10

Computer Architecture — EPITA — S3 — 2022/2023

Final Exam S3 4/10

Computer Architecture — EPITA — S3 — 2022/2023

EASy68K Quick Reference v1.8 http://www.wowgwep.com/EASy68K.htm Copyright © 2004-2007 By: Chuck Kelly
Opcode | Size | Operand | CCR | Effective Address s=source. d=destination, e=either, i=displacement Dperation Description
BWL sd XNZVC | Dn [An| (An) | (An)+ | -(An) | Gi.An) | (i.An.Rn) |absW |abs.L| G.PC) | G.PC.Rn) | #n
ABCD (B |DyDx WU g |- - | - | - | - = = C = - | Dyg + Dxg + X > Dxg Add BCD source and eXtend bit to
-(Ay).-(Ax) . -l -le |- . = - [-(Ay)g *+ -(Ax)g + X >-(Ax); | destination, BCD result
ADD® [BWL|s.Dn *rkkkklplg| s | 8 s s s s | s | s s § [s+Dn>Dn Add binary (ADDI or ADDQ is used when
On.d gld|d| d d | d d d [d]| - - - [Dn+d=>d source is #n. Prevent ADDR with #n.L)
ADDA® [WL|sAn [-——- slels|s | s |s s s | s | s s |s|sthn>hn Add address (W sign-extended to L)
ADDI* [BWL [#nd Frakkld]-(d] d [d] d d d [d] - - |s|#n+d>d Add immediate to destination
ADDA* [BWL [#n.d Frrdkkld)d{d | d | d] d d d | d s [#n+d>d Add quick immediate (#n range: | to B)
ADDX [BWL | Dy.Dx rraEkF -l - - | -] - - - |- - |Dy+Dx+X=>Dx Add source and eXtend bit to destination
~(Ay)-(Ax) = 2 e | - . . - |-(Ay) +-(Ax) + X > -(Ax)
AND* [BWL [s.Dn —**00| g s| s | s |s s s | s| s s |s'[sANDDn>Dn Logical AND source to destination
On.d B d| d d | d d d | d]| - - - [DnANDd > d (ANDI is used when source is #n)
ANDI™ [BWL [#0nd d d|d|d|[d d d | d s [#nANDd > d Logical AND immediate to destination
ANDI® [B [#nLCR - = [= [=] - . = || - s [#n AND CCR = LR Logical AND immediate to CCR
ANDI® | W [#nSR - - - - - - s |#n AND SR = SR Logical AND immediate to SR (Privileged)
ASL |BWL |DxDy B - - |- - - - é:lI:H- o | Arithmetic shift Dy by Dx bits left/right
ASR #n.Dy d = -1-1- - - |- s x |Arithmetic shift Dy #n bits L/R (#n:1to B)
W |d l-{d|d|d|d]| d [d]d - | ===t |Arithmetic shif ds it left/right (W only)
Bee BW® |address’ |-————- - - - - - - - - | if cc true then Branch conditionally (cc table on back)
address = PL (8 or 1B-bit + offset to address)
BCHG |B L|Dnd —*— ¢ d|d| d|d d d | d - |NOT(bit numberof d) = 7 | Set Zwith state of specified bit in d then
#nd d d|d|d]|d d d | d s [NOT(bit n of d)=> bitnofd [invert the bit in d
BCLR |B L|Dnd ——*—[¢ d|d|d|d d d | d - | NDT(bit number of d) > Z | Set Zwith state of specified bit ind then
#nd d|-|d|d|d|d d d | d s [0 = bit number of d clear the bit in d
BRA [BW® |address’ |—— - -l - -] - - |- - |address - PC Branch always (B or 16-bit + offset to addr)
BSET |B L|Dnd —*—| ¢ d|d | d|d d d | d - INDT(bit nofd) > 1 Set Z with state of specified bit in d then
#nd d|l-|d|[d|d|d]| d [d]d s |1 bit nofd set the bit in d
BSR BW® |address? |-———- -1 -] - - - - - - - - - |PC = -(SP); address = PC |Branch to subroutine (8 or 1B-bit + offset)
BTST (B L|Dnd ——*——| ¢ d| d d | d d d |d| d d - [NDT(bit Dnofd) > Set Zwith state of specified bit in d
#nd dl-|d| d d | d d d |d| d d s |NOT(bit #n ofd) > 1 Leave the bit in d unchanged
CHK W [sDn —*UUU| g s| s | s |s s s | s|s s | s |ifDn<0 or Dn>s then TRAP | Compare Dn with 0 and upper bound [s]
CIR [BWL|d -0100|d|-|d|d | d | d d d [d] - . -|0>d Clear destination to zero
[MP* [BWL|s.Dn +xxlplgtl s s | s | s s s | s|s s |s'|setCOR withDn-s LCompare Dn to source
CMPA | WL]sAn —****sle|ls| s | s |s s s | s|s s | s |setCCR withAn-s Compare An to source
CMPL* [BWL |#nd —*xxld|-|d|d | d]|d d d [d] - - | s [setCCR withd - #n Compare destination to #n
CMPM * [BWL | (Ay)+(Ax)+ [—****] - -l e - - - - - - | set CCR with (Ax) - (Ay) Compare (Ax) to (Ay): Increment Ax and Ay
DBcc | W |Dnaddres’ [-———- EO I B - - - |if cc false then { Dn-1 = Dn | Test condition. decrement and branch
if Dn <> -| then addr =>PC } | (I6-bit + offset to address)
DIVS W (sDn B s | s s s s s | s | s s s |+32bit Dn / IBbit s = +Dn | Dn= [[6-bit remainder, 16-bit quotient]
DIvVU W (sDn B s | s s s s s | s | s s s | 32bit Dn / 1Bbits = Dn Dn= [1B-bit remainder., {B-bit quotient]
EOR™ [BWL [Dnd B d|d|d|[d d d [d] - - [s"[DnXRd>d Logical exclusive OR Dn to destination
EDRI* | BWL |#nd d d|d|d]|d d d | d s [#nXIRd>d Logical exclusive OR #n to destination
EORI* [B |#nLCR . a2 = [= | = = & || = s [#n XOR CCR - CCR Logical exclusive OR #n to CCR
EORI | W [#nSR - - -] - - - s [#n XOR SR > SR Logical exclusive OR #n to SR (Privileged)
EXG LIRxRy |- gle| -] - | -]~ - - - | register €= register Exchange registers (32-bit only)
EXT WL |Dn —**00)d |- - | - | - |- - - - |Dn.B = Dn.W | DnW > Dn.L | Sign extend (change .Bto W or Wto.l)
ILLEGAL] | | - - - -] - - - -] - - - |PL>-(S8P): SR>-(SSP) | Generate lllegal Instruction exception
JMP d |-/ d| - | -1|d d d | dfd d [-[Td>P0 Jump to effective address of destination
JSR d [d| - | -|d d d | dfd d [-|PL>-8P):Td>PC push PC, jump to subroutine at address d
LEA LisAn |-~ els| -] -1]s s s | s| s s - |Ts > An Load effective address of s to An
LINK MAndn |- e I I B - - -] - - - |An > -(8P); SP > An; Create Iocal workspace on stack
SP +#n > 5P (negative n to allocate space)
LSL BWL | Dx.Dy *rRQ¥| B -l -] - - - - - I)Z(:ll:H—ﬂ Logical shift Dy, Dx bits left/right
LSR #n.Dy d - - - - - - - s X | Logical shift Dy, #n bits L/R (#n:1to B)
W |d -l-(d|d | d]|d d d | d - 0 ”:"[: E | Logical shift d | bit left/right (W only)
MOVE * [BWL [s.d —**00[g [s'[& | & B | e B B | e| s s |5 |s>d Move data from source to destination
MOVE | W |sCCR s|-|s|s|s|s s s | s|s s |s|s=>LLR Move source to Condition Code Register
MOVE | W [sSR s s | s s s s s | s | s s s [s=> 3SR Move source to Status Register (Privileged)
MOVE | W |[SRd |-—— d{-|{d|d|d]|d d d | d| - - |- [SR>d Move Status Register to destination
MOVE L{USPAR |———- -{d] -] - - - - - - - |USP > An Move User Stack Pointer to An (Privileged)
An ISP -ls| -] -]-1]-+ - - -] - - - |An > LISP Move An to User Stack Pointer (Privileged)
BWL sd XNZVC | Dn | An| (An) | (An)+ | (An) [G.An) | i.AnRn) |absW |abs.L| G.PC) | (iPC.Rn) | #n

Final Exam S3 — Appendices

5/10

Computer Architecture — EPITA — S3 — 2022/2023

Revised by Peter Csaszar, Lawrence Tech University — 2004-2006

DOpcode | Size | Operand | CCR Effective Address s=source, d=destination, e=gither, i=displacement Dperation Description
BWL sd XNZVC |DOn [An | (&n) | (An)+ | <(An) | (i.An) | (i.AnRn) |absW |abs.L| GPC) | (i.PC.Rn) | #n

MOVEA'[WLsAn [—— slels|s | s |s s s | s | s s s [s2>An Move source to An (MOVE s.An use MOVEA)
MOVEM*| WL [RnRnd [-—— d| - | d|d d d | d - | Registers = d Move specified registers to/from memory

sRn-Rn s | s - s s s | s | s s - |s = Registers (W source is sign-extended to L for Rn)
MIOVEP | WL|Dn(iAn) |——- s - - - d - - - |Dn > (iAn)..(i+2.An)..(i+4.A. | Move Dn to/from alternate memory bytes

(iAn).Dn d - | - - s - - - | (i.An) = Dn...(i+2.An)..(i+4.A. | (Access only even or odd addresses)
MOVED'[L [#0.0n —**00| d o e B = = s [#n>Dn Move sign extended B-bit #n to Dn
MULS | W [sDn —**00| g s| s |s|s s s | s | s s | s |=IBbits ™ +Bhit Dn = +Dn | Multiply signed B-bit; result: signed 32-bit
MULL | W [sDn —**00| g s| s | s |s s s | s| s s | s |IBbits * Bbit Dn = Dn Multiply unsig'd 1B-bit; result: unsig'd 32-bit
NBCD (B |d *U*U*| d d|d|d]|d d d [d] - - | -[D-dg-X>d Negate BCD with eXtend, BCD result
NEG |BWL|d xEkxAl d d|d|d]|d d d | d - |0-d=>d Negate destination (2's complement)
NEGX [BWL|d il ! d|d|d]|d d d | d -|0-d-X=>d Negate destination with eXtend
11 Y - i - - |- - |None No operation ocours
NOT [BWL|d —**00| d d|d|d]|d d d [d]| - - | - [NOT(d)>d Logical NOT destination (I's complement)
OR* [BWL[s.Dn —**00| g s| s | s |s s s | s| s s |s|sORDn=>Dn Logical OR

Ond B d| d d | d d d | d| - - - [DnORd>d (OR! is used when source is #n)
ORI* [BWL | #nd —**00| d d|d|d]|d d d | d s [#nDRd>d Logical OR #n to destination
ORI* [B [#nlIR . R = = || = s [#n DR CCR - CCR Logical OR #n to CCR
ORI W [#nSR - - - - - - s [#nOR SR -> SR Logical OR #n to SR (Privileged)
PEA Lls [s - | s s s | s | s s - [Ts > -8P) Push effective address of s onto stack
RESET | | |-———— - - - - - - - - - - | Assert RESET Line Issue a hardware RESET (Privileged)
ROL | BWL|DxDy —**0* | g - - -] - - - - - o P Rotate Dy, Dx bits |eft/right (without X)
ROR #n.Dy d = [= | = = | = | = - |s Rotate Dy, #n bits left/right (#n: | to 8)

W |d l-ldld | d | d | d | d]d]| -] - |-| =" |Rotate d bt left/right (W uiy)
ROXL | BWL|Dx.Dy *EXQ* | g - - | - - -l - - - - E<_r_>"|:|—<_| Rotate Dy, Dx bits L/R, X used then updated
ROXR #n.Dy d & 2 [= = = || & | s - |s X Rotate Dy, #n bits left/right (#n: | to 8)
W |d - d| d d | d d d [d]| - - - 'E:I"“ Rotate destination I-bit |eft/right (W only)

RTE - - - - - -] - - - | (SP)+ = SR: (SP)+ = PL | Return from exception (Privileged)
RTR - - - - - - -] - - - | (SP)+ = CCR, (SP)+ = PC |Return from subroutine and restore CCR
R | | === -l -1 -1 - - - -0 - - - |(8P)+ > PC Return from subroutine
SBCD B |Dy.Dx *U*U*| g =l =1 =1- - = =1 = - - | Dxg - Dy;g - X=> Dxg Subtract BCD source and eXtend bit from

-(Ay).-(Ax) - - e | - - =] -1 - - | - |-(Ax) - -(Ay) g- X >-(Ax) | destination, BCD result
Scc (B |d |- d d|d|d]|d d d [d]| - - - |Fecistruethenfs >d [WectruethendB=11111111

elsel's >d elsedB = 00000000

STop #n s==== == - - - - - - |'s |#n-> SR STOP Move #n to SR, stop processor (Privileged)
SUB* |BWL|s.Dn *kkkx plg| s | s s s s s [s | s s s'|Dn-s>Dn Subtract binary (SUBI or SUBQ used when

Dnd eld| d| d d | d d d | d| - - - [d-Dn>d source is #n. Prevent SUBH with #n.L)
SUBA® | WL|sAn [—-- sle| s | s s s s s | s | s s s [An-s= An Subtract address (W sign-extended to L)
SUBI™ [BWL [#nd rrkxkld]-|d| d | d | d d d | d s |d-#n>d Subtract immediate from destination
SUBD* |BWL |#nd rrAxR g | d| d | d d d d d | d s|d-#n>d Subtract quick immediate (#n range: | to B)
SUBX |BWL | Dy.Dx FrakE gl - - | - | - = 2 || & - |Dx-Dy-X=>Dx Subtract source and eXtend bit from

~(Ay)-(Ax) - -l -le |- - - -] - - |- [-A)--(AyY) =X > -(Ax) | destination
SWAP [W (Dn —**00| d - | - - - - -l -] - - - | bits[311B] €=>bits[15:0] | Exchange the 1B-bit halves of Dn
TAS [B |d —**00| d d|d|d]|d d d [d]| - - - |testd=>LCR: | >bit7 of d [N and Z set to reflect d, bit7 of d set tol
TRAP #n |- - - - - - - - s |PC>-(SSP).SR->-(SSP); |PushPC and SR, PC set by vector table #n

(vector table entry) = PC | (#n range: [to 15)
WAV | |- -] - - |- - -l -] - - - | IfV then TRAP #7 If overflow. execute an Overflow TRAP
TST |BWL|d —**00|d|-|{d|d|d]|d d d [d]| - - - |testd = CCR N and 7 set to reflect destination
LINLK A | d| - | - - - - - -1 - - - |An > SP: (SP)+ = An Remove local workspace from stack
BWL sd XNZVC | Dn | An | (An) | (An)+ | -(An) | G.An) | Gi.AnRn) |abs W |abs.L| GPC) | (i.PC.Rn) | #n
Condition Tests (+ R, INOT, ® XOR: " Unsigned, ® Alternate cc) An Address register (I6/32-bit, n=0-7) ~ SSP Supervisor Stack Pointer (32-bit)
oo Condition Test ce | Condition Test Dn Data register (8/16/32-bit, n=0-7) USP User Stack Pointer (32-bit)
T true | VC | overflow clear | IV Rn any data or address register SP Active Stack Pointer (same as A7)
F false i VS | overflow set v s Source, d Destination PC Program Counter (24-bit)
HEe higher than C+D) | PL | plus N e Either source or destination SR Status Register (I5-bit)
L§ lowerorsame |C+Z | MI | minus N #n Immediate data, i Displacement | GER Condition Code Register (lower 8-bits of SR)
HS",CC° | higher or same | !0 GE | greater or equal | (IN@ V) BCD BinarY Coded Decimal N negative. Z zero, V overflow, C carry, X extend
L". CS° | lower than ¥ T | lesz than NoV) lT Effective address * set according to operation's result, = set directly
NE not equal 17 BT [greaterthan | [N@ V) +1]| , Long only: all others are byte only - not affected, 0 cleared, | set, U undefined
4] equal 1 LE | less or equal NoV)+1 3 ﬁssemhlelr calculates offsct
: ranch sizes: .B or.8 -128 to +27 bytes, .W or .L -32768 to +32787 bytes

Assembler automatically uses A, |, or M form if possible. Use #n.L to prevent Quick optimization

| Distributed under the GNU general public use license.

Final Exam S3 — Appendices

6/10

Computer Architecture — EPITA — S3 — 2022/2023

Last NAME:coovvvveeereiieeeeeereee e First name:cccoevvveeeenieeeennineeeeeeee. Group: «ccoecveeeeeveeeeeeeeennn.

ANSWER SHEET TO BE HANDED IN

Exercise 1
Instruction Memory Register
A0 = 500005004
Example $005000 54 AF 00 40 E7 21 48 (O ?
A1l =$0000500C
Example $005008 C9 10 11 C8 D4 36 |FF| 88 No change

MOVE.L #2943,4(A0)

MOVE.B $5011,34(A2,D1.L)

MOVE.W 18(A0),-24(A0,D2.W)

Exercise 2
0 i Size Result N 7 v C
eration
P (bits) (hexadecimal)
$5D + $6F 8
$87654321 + SABCDEF0O 32
Exercise 3
Values of registers after the execution of the program.
Use the 32-bit hexadecimal representation.
D1=9% D3=9%
D2=§% D4=$

Final Exam S3 — Answer Sheet 7/10

Computer Architecture — EPITA — S3 — 2022/2023

Exercise 4

GetStart

Final Exam S3 — Answer Sheet 8/10

Computer Architecture — EPITA — S3 — 2022/2023

GetEnd

Final Exam S3 — Answer Sheet 9/10

Computer Architecture — EPITA — S3 — 2022/2023

SuccessiveCount

Final Exam S3 — Answer Sheet 10/10

	Exercise 1 (3 points)
	Exercise 2 (2 points)
	Exercise 3 (4 points)
	Exercise 4 (11 points)

