Key to Final Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use a pencil or red ink.

Exercise 1 (4.5 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of D flip-flops.

- 1. Complete the table shown on the <u>answer sheet</u>.
- 2. Write down the most simplified expressions of D for each flip-flop. Complete the Karnaugh maps for the solutions that are not obvious (circles included). An obvious solution does not have any logical operations apart from the complement (for instance: D0 = 1, $D1 = \overline{Q0}$). If possible, simplify with the exclusive OR operator.

Exercise 2 (4 points)

A microprocessor system includes a ROM device, a RAM device and two peripheral devices (**P1** and **P2**). The capacities (in bits) of these devices are 4 Mib, 64 Kib, 8 Kib and 1 Kib respectively. The microprocessor has a 24-bit address bus (the address bits are numbered from *A0* to *A23* and *A0* is the least significant bit). All the components have an 8-bit data bus. The ROM must be located in the lowest part of the memory space, followed by the RAM, **P1** and **P2**.

Calculate the size of the address buses for each device.

For the following questions, the linear-decoding technique must be used.

- 2. Which address bits are required to select the devices?
- 3. Write down an expression for each output of the address decoder. Take the *AS* signal (Address Strobe) into account.
- 4. Give the lowest and highest addresses for each device. (Use the 6-digit hexadecimal representation.)

Exercise 3 (4 points)

- 1. Wire the flip-flops (<u>figure 1</u>) in order to design a **modulo-13 asynchronous down counter**.
- 2. Wire the flip-flops (figure 2) in order to design a modulo-4 synchronous up counter.

Key to Final Exam S2 1/5

Exercise 4 (4 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 5 (3.5 points)

Answer the questions on the <u>answer sheet</u>.

Key to Final Exam S2 2/5

Family name: Group: Group:

ANSWER SHEET

Exercise 1

1.

Q2	Q1	Q0	D2	D1	D0
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	1	1
0	1	1	0	1	0
0	1	0	0	0	1
0	0	1	0	0	0
0	0	0	1	1	1

2.

		Q1 Q0			
	D 0	00	01	11	10
03	0	1	0	0	1
Q2	1	1	0	1	Φ

$$\mathbf{D0} = \overline{\mathbf{Q0}} + \mathbf{Q2.Q1}$$

Q1 Q0

D1 00 01 11 10

Q2 1 1 0 0 Φ

$$\mathbf{D1} = \overline{\mathbf{Q1}}.\overline{\mathbf{Q0}} + \overline{\mathbf{Q2}}.\mathbf{Q1}.\mathbf{Q0}$$

$$D2 = Q2.Q0 + \overline{Q2}.\overline{Q1}.\overline{Q0}$$

Exercise 2

1. ROM: 19 bits	2. Device-selection bits:
RAM: 13 bits	A23, A22, A21, A20
P1: 10 bits	
P2: 7 bits	

3. $CS_{ROM} = AS.A20$	$CS_{P1} = AS.A22$	
$CS_{RAM} = AS.A21$	$CS_{P2} = AS.A23$	

4.

Device	Lowest Address	Highest Address
ROM	100000	17FFFF
RAM	200000	201FFF
P1	400000	4003FF
P2	800000	80007F

Exercise 3

Figure 1

Figure 2

Exercise 4

1.

Number	S	E	M
428	0	10000111	10101100000000000000000
51.078125	0	10000100	1001100010100000000000

2.

IEEE-754 Representation	Associated Representation
4354000000000000 ₁₆	5 × 2 ⁵²
001010000000000_{16}	257 × 2 ⁻¹⁰³⁰

Key to Final Exam S2 4/5

Exercise 5

Question about memory devices	Answer
How can we connect memory devices in order to enlarge the depth?	In series
A memory has a width of 4 bits and a capacity of 64 KiB. How many address lines does this memory have?	17 lines
A memory has an 8-bit data bus and a 15-bit address bus. In a power of two, what is the capacity in bits of this memory?	2 ¹⁸ bits
An M1 memory has an 8-bit data bus and a 16-bit address bus. Two M1 memories are connected in series to build an M2 memory. What is the size of the address bus of the M2 memory?	17 bits

Feel free to use the blank space below if you need to:				

Key to Final Exam S2