Key to Final Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet only. Do not show any calculation unless you are explicitly asked.
 Do not use a pencil or red ink.

Exercise 1 (4.5 points)

The table shown on the answer sheet gives the sequence of a counter we want to design. This counter should be made up of D flip-flops.

1. Complete the table shown on the answer sheet.
2. Write down the most simplified expressions of D for each flip-flop. Complete the Karnaugh maps for the solutions that are not obvious (circles included). An obvious solution does not have any logical operations apart from the complement (for instance: $\mathrm{D} 0=1, \mathrm{D} 1=\overline{\mathrm{Q} 0}$). If possible, simplify with the exclusive OR operator.

Exercise 2 (4 points)

A microprocessor system includes a ROM device, a RAM device and two peripheral devices ($\mathbf{P 1}$ and $\mathbf{P} 2$). The capacities (in bits) of these devices are $4 \mathrm{Mib}, 64 \mathrm{Kib}, 8 \mathrm{Kib}$ and 1 Kib respectively. The microprocessor has a 24-bit address bus (the address bits are numbered from A0 to A23 and A0 is the least significant bit). All the components have an 8-bit data bus. The ROM must be located in the lowest part of the memory space, followed by the RAM, P1 and P2.

1. Calculate the size of the address buses for each device.

For the following questions, the linear-decoding technique must be used.
2. Which address bits are required to select the devices?
3. Write down an expression for each output of the address decoder. Take the AS signal (Address Strobe) into account.
4. Give the lowest and highest addresses for each device. (Use the 6-digit hexadecimal representation.)

Exercise 3 (4 points)

1. Wire the flip-flops (figure 1) in order to design a modulo-13 asynchronous down counter.
2. Wire the flip-flops (figure 2) in order to design a modulo-4 synchronous up counter.

Exercise 4 (4 points)

1. Convert the numbers given on the answer sheet into their single-precision IEEE-754 representations. Write down the final result in its binary form and specify the three fields.
2. Convert the double-precision IEEE-754 words given on the answer sheet into their associated representations. If a representation is a number, use the base- 10 following form: $k \times 2^{n}$ where k and n are integers (either positive or negative).

Exercise 5 (3.5 points)

Answer the questions on the answer sheet.

Family name:
First name:
Group:

ANSWER SHEET

Exercise 1

1.

Q2	Q1	Q0	D2	D1	D0
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	1	1
0	1	1	0	1	0
0	1	0	0	0	1
0	0	1	0	0	0
0	0	0	1	1	1

Q1 Q0
Q2
D0
$\mathbf{0}$
$\mathbf{0 0}$
$\mathbf{0 1}$
$\mathbf{1}$

$$
\mathbf{D 0}=\overline{\mathbf{Q} 0}+\mathbf{Q} 2 . \mathbf{Q} 1
$$

	Q1 Q0			
Q2	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	1	0	0	0
$\mathbf{1}$	0	1	1	Φ

$\mathbf{D} 2=\mathbf{Q} 2 . \mathbf{Q} 0+\overline{\mathbf{Q} 2} \cdot \mathbf{Q 1 . \overline { Q }}$

Exercise 2

1. ROM: 19 bits	2. Device-selection bits:
A23, A22, A21, A20	
RAM: 13 bits	
P1: 10 bits	
P2: 7 bits	

3. $\mathrm{CS}_{\text {rом }}=\mathrm{AS} . \mathrm{A} 20$
$\mathrm{CS}_{\text {P1 }}=\mathrm{AS} . \mathrm{A} 22$
$\mathrm{CS}_{\text {RAM }}=\mathrm{AS} . \mathrm{A} 21$
$\mathrm{CS}_{\mathrm{P} 2}=\mathrm{AS} . \mathrm{A} 23$
4.

Device	Lowest Address	Highest Address
ROM	100000	17 FFFF
RAM	200000	201 FFF
P1	400000	$4003 F F$
P2	800000	80007 F

Exercise 3

Figure 1

Figure 2

Exercise 4

1.

Number	S	E	M
428	0	10000111	10101100000000000000000
51.078125	0	10000100	10011000101000000000000

2.

IEEE-754 Representation	Associated Representation
4354000000000000_{16}	5×2^{52}
0010100000000000_{16}	257×2^{-1030}

Exercise 5

Question about memory devices	Answer
How can we connect memory devices in order to enlarge the depth?	In series
A memory has a width of 4 bits and a capacity of 64 KiB. How many address lines does this memory have?	17 lines
A memory has an 8-bit data bus and a 15-bit address bus. In a power of two, what is the capacity in bits of this memory?	2^{18} bits
An M1 memory has an 8-bit data bus and a 16-bit address bus. Two M1 memories are connected in series to build an $\mathbf{M 2}$ memory. What is the size of the address bus of the $\mathbf{M 2}$ memory?	17 bits

Feel free to use the blank space below if you need to:

